MAP 2121 - CÁLCULO NUMÉRICO (POLI) - Prova Sub - 01/12/11 Duração: 2 horas.

Preliminares: As funções seno hiperbólico e coseno hiperbólico são definidas, respectivamente, como:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 e $\cosh(x) = \frac{e^x + e^{-x}}{2}$

Verifique que $(\sinh(x))' = \cosh(x)$, $(\cosh(x))' = \sinh(x)$, $\sinh(-x) = -\sinh(x)$ e $\cosh(-x) = \cosh(x)$.

Questão 1 (2.5 pontos): Mostre que a equação $\cosh(x)=2$ possui uma única solução positiva. Mostre que esta pode ser calculada através do método de Newton a partir de $x_0=2$, justificando porque haverá convergência. Calcule a solução com precisão pré-fixada de 10^{-3} a partir de $x_0=2$.

Questão 2 (2.5 pontos): Deseja-se calcular o valor de $\int_1^2 \cosh(x) \, dx$ usando o método de n-Simpsons com erro menor que 10^{-4} . Estime o n necessário para tal e avalie a integral por este método. Calcule a integral exata e confronte o erro obtido com o erro estimado. Estime quantos trapézios seriam necessários para se atingir a mesma precisão?

Questão 3 (2.5 pontos): Seja p(x) o polinômio de grau menor ou igual a 3 que interpola uma função f em quatro pontos uniformemente espaçados $x_i = x_0 + i * h, i = 0, ..., 3$. Podemos aproximar a derivada de f no ponto médio $\bar{x} = (x_1 + x_2)/2$ como $f'(\bar{x}) = p'(\bar{x})$. Obteremos uma fórmula do tipo:

$$f'(\bar{x}) = \sum_{i=0}^{3} A_i f(x_i)$$

ao escrevermos o polinômio interpolador na forma de Lagrange e calcularmos sua derivada em $\bar{x}.$

a) Obtenha os coeficientes da fórmula (note que se f for um polinômio de grau até 3 a fórmula dará resultados exatos)

b) Use esta fórmula com $x_0=0$ e h=2/3 para aproximar o valor de (cosh)'(1) e compare o resultado com o valor exato da derivada de cosh no ponto 1.

Questão 4 (2.5 pontos):

Determine o polinômio de grau menor ou igual a 3 que melhor aproxima $\cosh(x)$ em [-1,1] pelo método dos mínimos quadrados em relação ao produto interno $\int_{-1}^1 f(x)g(x)\ dx$.

Fórmulas

Erro no método de n-trapézios: $|E_{nT}| \leq \max_{[a,b]} |f''(x)| (b-a)h^2/12$

Erro de Interpolação: $|f(x) - p_n(x)| = \frac{|f^{(n+1)}(y)|}{(n+1)!} |\prod_{i=0}^n (x - x_i)|$, para algum y em [a,b].

Erro no método de n-Simpsons: $E_{nS} = -h^4 f^{(4)}(z)(b-a)/180$, para algum z em [a,b].